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The two-and-three-dimensional Ashkin Teller model is studied within two 
renormalization group treatments. The complete flow diagram is obtained for 
this two-parameter Hamiltonian and the results for the critical couplings and 
critical exponents are compared to the exact ones when avaible. 
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1. I N T R O D U C T I O N  

The Ashkin-Teller  (AT) model  has four states per lattice site and has been 
int roduced (1) as a generalization of the Ising model  to describe a four-com- 
ponent  system. The AT model  can be expressed as two Ising models 
coupled by a four-spin interaction. (2'3) Each site i is occupied by two spins 
ai and Si, both  represented by Boolean variables. By combining these two 
variables, we obtain four possible states on each site. The AT Hami l ton ian  
is defined as 

3 H =  ~ 2 { J ( a , | 1 7 4 1 7 4 1 7 4 1 7 4  (1) 
( i , j )  

where fl = (kT)  1 and J and K stand for the two- and four-spin couplings, 
respectively. The sum is over nearest neighbor  pairs ( i , j ) ,  and | is the 
X O R  (exclusive-or) Boolean operator .  The four-spin coupling term can 
also be interpreted as an Ising ordinary  two-spin coupling between the 
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composed spins a | S that can be defined at each site. The factor 2 appears 
because we choose the two-parallel-spin configuration as the zero level for 
the energy measure, instead of the usual choice of + J energy for parallel 
and antiparallel configurations. The 2D AT model has not been solved 
exactly, but some of its critical behavior is known. I3 5) At K =  0 the model 
reduces to two decoupled Ising models with nearest neighbor interaction J. 
For J = K  the model reduces to the four-state Ports model. These two 
limiting models show second-order phase transitions, but with different 
critical indices. The two critical points associated with these two limits are 
connected by a line of continuously varying critical indices. Wegner (6) 
showed that the 2D critical AT model is equivalent to a staggered eight- 
vertex model, and since then relations between the critical indices of these 
two models have been derived. ~7 9~ A 1D quantum (time-continuous) 
Hamiltonian analog of the 2D AT model has been studied by different 
methods (1~ and the validity of the previously mentioned extended rela- 
tions has been established. For  the 3D AT model only few mean-field, 
series, and Monte Carlo results are available. (12'13) 

In this paper we present a study of the critical properties of the 2D 
and 3D AT models within two similar approaches. In the first one we 
revise the mean-field renormalization group (MFRG)  treatment of the 
model presented previously. (14~ This revision is based on two aspects. 
(a) We used two coupled recursion relations to obtain the complete (J, K) 
flow diagram, instead of the only one parametrized recursion relation used 
in ref. 14, which leads to restricted only-J-varying independent flow 
diagrams. (b) We have used larger finite lattices, improving substantially 
the results. The second approach is based on the simultaneous use of three 
different finite-sized lattices to obtain the renormalization group recursion 
relations. This approach, which has been successfully used to study the 
Ising and three-state Potts models, (15) eliminates the weakness of the only- 
two-lattice approach(16)--the mean field assumption that the order 
parameter scales in the same rate as the boundary field--and furnishes 
excellent results even for small lattices. 

2. GENERAL FORMALISM 

We define the AT model in a finite, d-dimensional lattice with N sites. 
Each site i contains two Ising spins ~i and Si which can assume values 0 
and 1. The model Hamiltonian is 

flH=ZJ ~ (a~|174 ~ a i | 1 7 4  
~ i , j )  ( i , j )  

+ 2hJ ~ pe(a~ + S~) + 2gK ~ p~(ai | Si) (2) 
i i 



RG Studies of Ashkin-Teller Model 55 

where i =  1, 2 ..... iV, and (i, j )  are nearest neighbor pairs. This model 
corresponds to a finite lattice isolated from an infinite one, by cutting the 
boundary links in between. The fields 2hJ and 2gK, representing the 
vanishing interactions between sites inside and outside isolated part of the 
lattice, are included in order to break the spin-flip symmetry. The weight 
p~ is the number of cut boundary links at s i te / - - internal  sites have p~ = 0. 
For a given configuration c of the spins a~ and S~, let us define 

M , . -  ~ (a~ + Si) (3a) 
i 

Tc - 2  pi(a,+ S,) (3b) 
i 

Q c = ~ a ~ |  (3c) 
i 

R~.- ~ pi(ag| S~) (3d) 
i 

If ( ' " ) o  denotes thermodynamic average for h = g = O ,  we have 
(M, . )o=2(Q~. )o=W and ( T ~ . ) o = 2 ( R c ) o = P = ~ p ~ .  

Up to first order in the fields h and g, we get the finite lattice order 
parameters M and Q, 

M =  ( M,. ) - (M, . )o  = -2flhJ( ( M,.Tc )o - NP) (4a) 

Q= (Q,.)  - (Q,,)o = -2 f lgK( (Q~R, . )o -NP/4)  (4b) 

3. TWO-LATTICE MFRG 

The MF R G assumption is that the ratio between each of those order 
parameters and the corresponding field does not depend upon the length 
scale for large linear sizes L = N lie. The plausibility mean-field argument to 
sustain this assumption is to invoke the magnetization of the outside lattice 
as the physical origin for the fields h and g acting on the inside finite lattice. 
In this case, M and h in Eq. (4a) must scale as L ~~ both with the same 
unknown exponent ~0. The same occurs also for Q and g in Eq. (4b). As a 
consequence, the quantities JFz~(x , y) and KWL(x, y)--defined below as 
functions of x - e x p ( -  2J) and y - exp( - 2K)--scale as L ~ i.e., they do not 
depend upon the lattice size L, in the large-L limit, 

FL(x, y) = 2( ( M,.T~. )o -- NP)/N 

WL(x, y) -- (4(Q,.R~.)o - NP)/N 

(5a) 

(5b) 
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The numerical factors in Eq. (5) are convenient for dealing only with 
whole numbers in the computer. The MFRG recursion relations 

J'Fr,(x', y')= JFL(x, y) (6a) 

K'Wc,(x', y')= KWL(x, y) (6b) 

are obtained by equating the values of JF and KW computed for two 
different sized finite lattices with lengths L ' <  L. From these relations one 
obtains the complete flow diagram in (aT, K) space of parameters. In order 
to solve numerically Eq. (6) for J '  and K', given J and K, we used the 
method of iteration (see, for instance, ref. 17). 

Using the smallest possible finite square lattices, namely the ones with 
N = 2 and N ' =  1 yielding a scaling factor b = L/L'= xf2, we obtained the 
phase diagram shown in Fig. la for the J > 0  and K > 0  case, where we 
used the variables tanh J and tanh K in order to show all the fixed points. 
For K <  0, we adopted a staggered g field, reaching a different version of 
Eq. (6b), and obtained the remainder of the phase diagram shown in 
Fig. lb-- the J < 0  part is symmetric to the whole picture. Although each 
part of the diagram is obtained by a different set of RG recursion relations, 
they must be interpreted as a whole. There are four stable fixed points 
(solid, tilted squares) whose basins of attraction correspond to the four 
possible thermodynamic phases: 

(i) P (or P) for the paramagnetic phase where there is no magnetic 
order at all, and both M and Q vanish. 

(ii) F for the ferromagnetic Ising phase where the composed spins 
o | S are ferromagnetically ordered (Q r 0) but neither o or S spins solely 
present order ( M =  0). 

(iii) F" for the antiferromagnetc Ising phase similar to F. 

(iv) X (or X) for the Baxter phase where o, S, and a |  S are ordered 
( M e 0  and Qr  

Figure 1 presents also four semistable fixed points (solid circles) of 
interest for the study of the critical behavior: 

(i) A (or ,~), where the ferro-para ordinary Ising transition occurs 
for both o and S spins independently, in the absence of the four-spin inter- 
action. 

(ii) B, where the ferro-para Ising transition occurs for the composed 
spins cr | S. 

(iii) B, where the antiferro-para Ising transition occurs, similar to B. 

(iv) D, where a fourth Ising transition occurs. In the K ~  ~ limit, the 
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| S spins are completely frozen in the ferromagnetic ground state, but 
the pairs aS can flip together at each site, allowing the quoted transition. 
It appears just at half the normal Ising critical Jvalue, because there are 
two J bonds linking neighboring sites. 

The most interesting critical behavior of the AT model corresponds to 
the last two fixed points that are completely unstable: 

(i) C, where the four-state Potts model transition occurs. 

(ii) E, where the phases 1~ and X degenerate. 

~2 
r -  

F" 

E 

l 

P, 

~ 5 

\ 

X~ A " 
thJ  

x 

w 

\ \  

\ 

E 
Fig. 1. The RG phase diagram obtained from the smallest possible finite lattices with N - 2  
and N ' =  l, in 2D. The qualitative features are the same for all other lattice sizes and also for 
the three-lattice approach. The quantitative results are systematically improved, however, as 
can be seen from the tables. The arrows indicate the RG eigenvectors at fixed points, and 
the various )o's indicate the respective eigenvalues. Solid, tilted squares are RG attractors 
corresponding to thermodynamic  phases, open circles are completely unstable critical fixed 
points governing crossover behavior, and solid circles are the critical semistable fixed points 
governing critical behavior along critical lines. The dashed E -C  line shows the exactly known 
nonuniversal transition. Near this line, the pair of points marked on the J axis correspond to 
our best results obtained from the RG defined in Section 4. 
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Line E-C is known to have nonuniversal behavior, with continuously 
varying critical exponents along it. Within RG theory, a line of fixed points 
can fit this feature. Although our flow diagram of Fig. 1 does not present 
such a line of fixed points, this goal is approached by taking larger finite 
lattices, and furthermore by relaxing the MFRG assumption (see next 
section). For now, we analyze the correct aspects of Fig. 1. First, the 
e i g e n v a l u e  ~,7 = 1 corresponds to the quoted line of fixed points, beginning 
at point E. At T = 0 ,  the X-F transition occurs at K = - J .  We can 
understand this fact by analyzing the two competing ground states of 
Hamiltonian (1) for J > 0  and K < 0 :  each of the three terms 0 i |  
S i |  and ( o ~ | 1 7 4  that we have regrouped the four- 
spin term in a convenient new way--can assume values 0 or 1. Under the 
point of view of the J >  0 interaction, it is energetically convenient to take 
the 0 result for both the first two | terms above. Under the point of view 
of the K <  0 interaction, however, it is convenient to take value 1 for one 
of them and 0 for the other: this saves an amount - K  (absolute value) of 
energy, paying a price J. The transition from one ground state to the other 
occurs then at J = - K ,  in agreement with the finite slope shown near 
point E. The deviation between our curve and the exact one is magnified 
because we decided to draw them in a tanh scale: actually, the exact curve 
corresponds to 2 K =  - 2 J +  2, near E. The extra term 2 is negligible in 
the limit T ~ 0  (or J, -K--* oe), and is due to the doubled degeneracy of 
the possible excitations from the X ground state relative to the correspond- 
ing excitations from the F one: by flipping only one spin from the X 
ground state, we have a choice between spins a~ or S~ to localize the 
frustrated J bonds, but we have no such choice by flipping one spin from 
the F ground state in order to get a first excited state. 

The four-state Potts fixed point C is located at the exactly known 
position Jc = Kc = (In 3)/4 and the symmetries of Hamiltonian (1) are also 
respected there: one eigenvector along the J =  K axis governing the Potts 
criticality, and the other with exactly - 2  slope. This value can be under- 
stood as follows: starting from critical point C, where the three spin 
couplings of Hamiltonian (1) are equivalent, and increasing J by a small 
quantity 6, it is necessary to decrease K by 2~5 in order to restore criticality, 
because there are two Ising J couplings and only one K counterpart. Other 
symmetries are also respected at points A, ,~, B, B, and D, namely JA  = 

K B = - K g  = 2Jo, and right angles between eigenvectors at B, ~, and D. 
Besides the qualitative aspects discussed up to now, Table I sum- 

marizes the numerical results we get using bigger lattices for J, K > 0. Note, 
in particular, the clear tendency to unity presented by eigenvalues 22 and 
)~5 along line E C, according to its nonuniversal character. 

For the 3D AT model, the phase diagram also presents the same 
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Table I. Square Lattice AT Model" 

59 

N N '  JA v I Vp 22 ~3 ~5 26 

2 l 0.3466 1.67 1.43 0.83 0.75 1.14 0.67 
4 2 0.3699 1.28 1.03 0.81 0.67 1.16 0.75 
9 6 0.3861 1.18 0.94 0.88 0.80 1.09 0.83 

Exact 0.4407 1 0.67 1 1 

~ M F R G  results for Ising critical couplings J A = K B = - K g = 2 J D ,  values of Ising 
(v I --- In b/ln 21) and Potts (vp -= In b/ln 24) correlation length critical exponents, and eigen- 
values )o2, )~3, 25, and 26. The exactly known Potts critical coupling Jc  = Kc = (ln 3)/4 (see 
Fig. la)  is obtained for all lattice sizes (with minor deviations for N =  9). 

features of Fig. 1 for K >  0, but there is a fundamental difference for K <  0, 
as shown in Fig. 2 obtained from the same lattices N = 2 and N ' =  1. Now, 
point E is located at a finite temperature, and the paramagnetic phase is 
not extended until zero temperature along the J - - K  axis, as in 2D. This 
behavior agrees with results obtained from series and Monte Carlo data (12) 
(see Figs. 1 and 3 of that reference). Furthermore, the eigenvalues 28 and 
29 are no longer equal to 1 (for N = 2  and N ' =  1, we get 28=  1.28 and 
29 = 1.11), and line E-C no longer has the nonuniversal character pre- 
sented in 2D, also in agreement with ref. 12. At point E, we get two eigen- 
values, one smaller than 1 responsible for its attraction character. The 
other eigenvalue is o% and gives the runaway behavior characteristic of a 
first-order phase transition along line E-E, also in agreement with ref. 12. 

" i 

Fig. 2. The K <  0 RG phase diagram for 3D. For K >  0, the diagram is similar to the upper 
part of Fig. 1. 
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Tablel l .  3D AT Model: MFRG Results 

N N '  JA J c  v I Vp 2 2 2 3 2 5 2 6 

8 I 0.2066 0.1713 1.22 1.04 0.59 0.50 1.48 0.25 
8 2 0.2077 0.1708 1.11 0.93 0.68 0.60 1.33 0.42 
8 4 0.2091 0.170t 0.99 0.82 0.81 0.75 1.17 0.67 

Series 1181 0.2168 0.1616 0.63 

We did not obtain the phase ( a )  proposed in ref. 12, where the symmetry 
between spins a and S is spontaneously broken, but even the existence of 
this phase is an open question, and our results are also inconclusive about 
this point because we did not introduce any symmetry-breaking ingredient 
between spins a and S. Numerical results for K >  0 are shown in Table II, 
for bigger lattices. Unfortunately, we are not able to do calculations for 
sufficiently large lattices in order to be conclusive about  the critical 
behavior in this 3D case, but some qualitative features can be observed: for 
instance, the tendency to obtain 22 > 1 for larger lattices, as expected. 

4. T H R E E - L A T T I C E  R G  

As we pointed out, the assumption that the symmetry-breaking fields 
(boundary fields h and g) scale in the same form as the order parameters 
(bulk magnetizations M and Q, respectively) is incorrect. In this section we 
abandon this assumption, allowing for different scaling exponents. Thus, in 
the large-L limit, the ratios M/h and Q/g scale as L ~ and L ~, respectively, 
where (p and ~b are some unknown exponents. Let us consider three lattices 
of sizes L, L', and L" (L > L'  > L ' ) .  At some fixed critical point (x*, y*) = 
( e x p ( - 2 J * ) ,  e x p ( - 2 K * ) )  we can write 

J*FL,,(x*, y*)L" ~~ y*)L'  ~o 

J*FL,(x*, y*)L'  ~~ y*)L  -~ 

K*WL,,(x*, y*)L" ~=K*WL,(X*, y*)L'  ~ 

K*WL,(X*, y*) L '-~= K*WL(X*, y*) L -~ 

(7a) 

(7b) 

(7c) 

(7d) 

Eliminating q~ an ~b from this set of equations, we can determine the 
possible solutions for (J*,  K*). Choosing one of them, we can write the 
recursion relations 
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FL,(x*, y*) 
J'FL,(X', y ' ) -  JFL(x , y) (8a) 

Fc(x*, y*) 

WL,(X*, y*) 
K'Wc,(X', y ' ) -  KWL(X, y) (8b) 

WAx*, y*) 

There is a trivial solution to choose for the fixed point (J*, K*), 
namely J * = K * = J c = K c ,  the location of point C (see Fig. 1). This 
choice reproduces the same results already obtained from the MFRG 
approach presented in Section 3. Another interesting possible choice is 
J* =JA, K* =0, where JA remains to be determined from Eq. (7a) and 
(7b). In this case, however, the ratio 

WL,(x*, y*) 
WL(x*, y*) 

appearing in Eq. (8b) cannot be determined from (7d). Then, we choose it 
by imposing the symmetry K B = JA in the resulting flow diagram. Giving 
support to this choice, we observe that all other symmetries quoted in 
Section 3 are recovered. 

Numerical values are presented in Table III, and values for JA and v I 
reproduce that obtained for the Ising model. (15) We see that results for both 
critical couplings and critical indices improve over those presented in 
Table I. It is interesting to note that the only source of inaccuracy the 
present method still has is the small size of the finite lattices we used: the 
only assumption now is the finite-size power-law behavior supposed for 
thermodynamic quantities near criticality. The absence of the erroneous 
mean-field hypothesis characteristic of the two-lattice approach yields very 
good numerical results even for the small lattices we used here. 

Table III. Square  Latt ice AT  Mode l"  

N N'  N" JA Jc v I Vp 22 25 

4 2 1 0.4093 0.2963 1.23 0.98 0.82 1.15 
9 4 1 0.4482 0.2919 1.14 0.87 0.84 1.14 

12 6 2 0.4167 0.2795 1.08 0.83 0.83 1.14 
12 9 6 0.4304 0.2919 0.95 0.68 0.91 1.06 

Exact 0.4407 0.2747 1 0.67 1 1 

"Three-lattice RG results. Periodic boundary conditions are adopted in one direction of the 
finite lattices, except for the first row. 



62 de Ol ivei ra and S& Barreto 

5. C O N C L U D I N G  R E M A R K S  

In this communication we have studied the 2D and 3D Ashkin Teller 
model by two RG approaches. An improved version of the two-lattice 
renormalization scheme overcomes the incorrect qualitative results 
obtained in ref. 14, where only J is allowed to vary by the scaling transfor- 
mation, while K is considered as a fixed parameter. By exploring the scaling 
behavior of two order parameters M and Q, we obtain a complete two- 
dimensional flow diagram in (J, K) space. This improvement is important 
because it allows the study of crossover behavior, in particular the non- 
universal character observed in the 2D AT model. Various exactly known 
critical quantities and symmetries are recovered by this simple approach. 

However, this two-lattice RG is based on an incorrect assumption: 
that each order parameter M or Q scales with the lattice size L through 
the same exponent as the respective symmetry-breaking field h or g. This 
fact limits numerical accuracy. In order to overcome this source of 
incorrectness, we introduce another RG without the quoted assumption, 
using three instead of two lattices to define the recursion relations. This last 
approach has the same status of the usual finite-size scale hypothesis, 
having no other assumptions, the only limit for accuracy being the com- 
putational capability for large-lattice calculations. Remember that the only 
assumption behind this approach is that any thermodynamic quantity 
scales as a power law of the system length size, or, in other words, that the 
thermodynamic potentials are generalized homogeneous functions of the 
corresponding fields ( J -  Jc and K -  Kc in the present case) and also of the 
inverse length size (L 1) of the system. Even for lattices of at most 12 sites, 
we were able to obtain good results with errors of a few percent. Improved 
results can be obtained by using Monte Carlo methods to calculate the 
averages in Eq. (4). Work along this line is in course. 

Finally, we must point out that for the first time within the MFRG 
scheme a more-than-one-parameter Hamittonian has been correctly treated 
once the complete flow diagram has been obtained, allowing the study of 
crossover behavior. Other models, e.g., the Blume-Emery-Griffiths model, 
can be treated in the same scheme. Work along this line is also in course. 
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